Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 23
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Vet J ; 304: 106097, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38479492

RESUMO

Vaccination is the most effective means of preventing and controlling porcine epidemic diarrhea (PED). Conventional vaccines developed from porcine epidemic diarrhea virus (PEDV) GI-a subtypes (CV777 and SM98) have played a vital role in preventing classical PED. However, with the emergence of PEDV mutants in 2010, conventional PEDV GI-a subtype-targeting vaccines no longer provide adequate protection against PEDV GII mutants, thereby making novel-type PED vaccine development an urgent concern to be addressed. Novel vaccines, including nucleic acid vaccines, genetically engineered subunit vaccines, and live vector vaccines, are associated with several advantages, such as high safety and stability, clear targeting, high yield, low cost, and convenient usage. These vaccines can be combined with corresponding ELISA kits to differentiate infected from vaccinated animals, which is beneficial for disease confirmation. This review provides a detailed overview of the recent advancements in PED vaccines, emphasizing on the research and application evaluation of novel PED vaccines. It also considers the future directions and challenges in advancing these vaccines to widespread use in clinics.


Assuntos
Infecções por Coronavirus , Vírus da Diarreia Epidêmica Suína , Doenças dos Suínos , Vacinas Virais , Suínos , Animais , Infecções por Coronavirus/prevenção & controle , Infecções por Coronavirus/veterinária , Vacinas Atenuadas , Diarreia/prevenção & controle , Diarreia/veterinária
2.
J Proteomics ; 296: 105107, 2024 03 30.
Artigo em Inglês | MEDLINE | ID: mdl-38325729

RESUMO

To explore the effect of feeding fermented distiller's grains (FDG) diets on spleen and mesenteric lymph nodes (MLN) immune status and metabolomics in finishing cattle, eighteen Guanling crossbred cattle (18 months old, 250.0 ± 25 kg) were randomly divided into 3 groups: a basal diet (Control) group, an FDG-15% group, and an FDG-30% group (containing 0%, 15% and 30% FDG to partially replace the concentrates, respectively). After 75 days, the spleens and MLN were collected for detection of relative spleen weight, immune parameters, and metabolomic analysis. Compared with the Control group, FDG-30% group significantly increased (P<0.05) the relative spleen weight. In addition, the level of IL-17A in the spleen of the FDG-30% group was significantly higher than that of the FDG-15% group. Metabolomic analysis showed that differential metabolites (VIP>1, P<0.05) of spleen and MLN in FDG-15% and FDG-30% groups are mostly lipids and lipid molecules. KEGG analysis illustrated that choline metabolism in cancer, glycerophospholipid metabolism, biosynthesis of unsaturated fatty acids and insulin resistance were metabolic pathways in spleen shared by FDG-15% group vs.Control group and FDG-30% group vs.Control group, and choline metabolism in cancer was a metabolic pathway in MLN shared by FDG-15% group vs.Control group and FDG-30% group vs.Control group. These results suggest that feeding FDG may promote spleen development by regulating choline metabolism in cancer, glycerophospholipid metabolism, biosynthesis of unsaturated fatty acids and insulin resistance. Additionally, it may affect MLN development by regulating choline metabolism in cancer. SIGNIFICANCE: Fermented distiller's grains (FDG) is a high quality alternative to feed because it is rich in beneficial microorganisms and nutrients. The spleen and mesenteric lymph nodes (MLN) are important peripheral immune organs in animals, whose status reflects the health of the animal. However, there are few reports on the effect of feeding FDG diets on spleen and MLN immune status and metabolomics in domestic animals. In this study, we found that feeding FDG may promote spleen development by regulating choline metabolism in cancer, glycerophospholipid metabolism, biosynthesis of unsaturated fatty acids and insulin resistance metabolic pathways, and may affect MLN development by regulating choline metabolism in cancer. This study extends our understanding of the metabolomics of the spleen and MLN in FDG and helps to further understand of the immunomodulatory effects of the FDG diet.


Assuntos
Resistência à Insulina , Neoplasias , Bovinos , Animais , Baço , Fluordesoxiglucose F18 , Ração Animal/análise , Dieta/veterinária , Ácidos Graxos Insaturados , Linfonodos , Glicerofosfolipídeos , Colina
3.
Animals (Basel) ; 14(2)2024 Jan 16.
Artigo em Inglês | MEDLINE | ID: mdl-38254452

RESUMO

Host plants play a vital role in insect population differentiation, while symbiotic associations between bacteria and insects are ubiquitous in nature. However, existing studies have given limited attention to the connection between host-related differentiation and symbiotic bacterial communities in phytophagous insects. In this study, we collected 58 samples of Aphis odinae from different host plants in southern China and constructed phylogenetic trees to investigate their differentiation in relation to host plants. We also selected aphid samples from the five most preferred host plants and analyzed their symbiotic bacterial composition using Illumina sequencing of the V3-V4 hypervariable region of the 16S rRNA gene. The phylogeny and symbiotic bacterial community structure of A. odinae populations on different host plants showed that samples from Triadica sebifera (Euphorbiaceae) had a consistent presence of Wolbachia as the predominant secondary symbiont and suggested the possibility of undergoing differentiation. Conversely, although differentiation was observed in samples from Rhus chinensis (Anacardiaceae), no consistent presence of predominant secondary symbionts was found. Additionally, the samples from Heptapleurum heptaphyllum (Araliaceae) consistently carried Serratia, but no host differentiation was evident. In summary, this study reveals a partial correspondence between symbiotic bacterial communities and host-related differentiation in A. odinae. The findings contribute to our understanding of the microevolutionary influencing the macroevolutionary relationships between bacterial symbionts and phytophagous insects. The identification of specific symbionts associated with host-related differentiation provides valuable insights into the intricate dynamics of insect-bacteria interactions.

4.
Zookeys ; 1186: 15-24, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38107660

RESUMO

Graphidessajinfoensissp. nov. is described from Chongqing and Guizhou in Southwest China. The diagnostic morphological characters of the new species are described and illustrated in color plates. The distribution of all species of the genus Graphidessa Bates, 1884 is mapped and the key to all species of this genus is updated. The COI gene sequence of the new species is also provided.

5.
Front Vet Sci ; 10: 1238064, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37929280

RESUMO

Fermented distiller's grains (FDG)-based diets are nutritious and can improve the growth and intestinal immunity in livestock. However, there is limited research examining the effect of feeding FDG-based diets on changes in intestinal metabolites and related pathways in livestock. In this study, nine Guanling crossbred cattle (Guizhou Guanling Yellow cattle × Simmental cattle) were selected and randomly divided into a basal diet (BD) group and two experimental groups fed with FDG replacing 15% and 30% of the daily ration concentrates (FDG-Case A and FDG-Case B), respectively, with three cattle in each group. Fresh jejunum (J) and cecum (C) tissues were collected for metabolomic analysis. Differential metabolites and metabolic pathways were explored by means of univariate and multivariate statistical analysis. Compared with the J-BD group, 30 and 100 differential metabolites (VIP > 1, p < 0.05) were obtained in the J-FDG-Case A group and J-FDG-Case B group, respectively, and the J-FDG-Case B vs. J-FDG-Case A comparison revealed 63 significantly differential metabolites, which were mainly divided into superclasses including lipids and lipid-like molecules, organoheterocyclic compounds, and organic acids and derivatives. Compared with the C-BD, 3 and 26 differential metabolites (VIP > 1, p < 0.05) were found in the C-FDG-Case A group and C-FDG-Case B group, respectively, and the C-FDG-Case B vs. C-FDG-Case A comparison revealed 21 significantly different metabolites, which were also mainly divided into superclasses including lipids and lipid-like molecules, organoheterocyclic compounds, and organic acids and derivatives. A total of 40 metabolic pathways were identified, with a significance threshold set at p < 0.05. Among them, 2, 14, and 18 metabolic pathways were significantly enriched in the J-FDG-Case A vs. J-BD, J-FDG-Case B vs. J-BD, and J-FDG-Case B vs. J-FDG-Case A comparisons, respectively. Meanwhile, 1, 2, and 3 metabolic pathways were obtained in the C-FDG-Case A vs. C-BD, C-FDG-Case B vs. C-BD, and C-FDG-Case B vs. C-FDG-Case A comparisons, respectively. Furthermore, four significant metabolic pathways, namely insulin resistance, biosynthesis of unsaturated fatty acids, linoleic acid metabolism, and primary bile acid biosynthesis, were significantly enriched in Guanling crossbred cattle fed FDG diets. These results suggest that feeding FDG diets may promote the growth and intestinal immunity of Guanling crossbred cattle by regulating metabolic patterns of lipid compounds and related metabolic pathways. This study sheds light on the potential metabolic regulatory mechanisms of FDG diets and offers some references for their use in livestock feed.

6.
Animals (Basel) ; 13(22)2023 Nov 07.
Artigo em Inglês | MEDLINE | ID: mdl-38003055

RESUMO

Fermented distillers' grains (FDG) are commonly used to enhance the health and metabolic processes of livestock and poultry by regulating the composition and activity of the intestinal microbiota. Nevertheless, there is a scarcity of research on the effects of the FDG diet on the gastrointestinal microbiota and its metabolites in cattle. This study examines the impact of FDG dietary supplements on the gastrointestinal flora and metabolic profile of Guanling cattle. Eighteen cattle were randomly assigned to three treatment groups with six replicates per group. The treatments included a basal diet (BD), a 15% concentrate replaced by FDG (15% FDG) in the basal diet, and a 30% concentrate replaced by FDG (30% FDG) in the basal diet. Each group was fed for a duration of 60 days. At the conclusion of the experimental period, three cattle were randomly chosen from each group for slaughter and the microbial community structure and metabolic mapping of their abomasal and cecal contents were analyzed, utilizing 16S rDNA sequencing and LC-MS technology, respectively. At the phylum level, there was a significant increase in Bacteroidetes in both the abomasum and cecum for the 30%FDG group (p < 0.05). Additionally, there was a significant reduction in potential pathogenic bacteria such as Spirochetes and Proteobacteria for both the 15%FDG and 30%FDG groups (p < 0.05). At the genus level, there was a significant increase (p < 0.05) in Ruminococcaceae_UCG-010, Prevotellaceae_UCG-001, and Ruminococcaceae_UCG-005 fiber degradation bacteria. Non-target metabolomics analysis indicated that the FDG diet significantly impacted primary bile acid biosynthesis, bile secretion, choline metabolism in cancer, and other metabolic pathways (p < 0.05). There is a noteworthy correlation between the diverse bacterial genera and metabolites found in the abomasal and cecal contents of Guanling cattle, as demonstrated by correlation analysis. In conclusion, our findings suggest that partially substituting FDG for conventional feed leads to beneficial effects on both the structure of the gastrointestinal microbial community and the metabolism of its contents in Guanling cattle. These findings offer a scientific point of reference for the further use of FDG as a cattle feed resource.

7.
Front Microbiol ; 14: 1171563, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37789852

RESUMO

Dried distillers' grains with solubles (DDGS) are rich in nutrients, and partially alternative feeding of DDGS effectively reduces cost of feed and improves animals' growth. We used 16S rDNA gene sequencing and LC/MS-based metabolomics to explore the effect of feeding cattle with a basal diet (BD) and a Jiang-flavor DDGS diet (replaces 25% concentrate of the diet) on microbiome and metabolome of ruminal and cecal contents in Guanling yellow cattle. The results showed that the ruminal and cecal contents shared the same dominance of Bacteroidetes, Firmicutes and Proteobacteria in two groups. The ruminal dominant genera were Prevotella_1, Rikenellaceae_RC9_gut_group, and Ruminococcaceae_UCG-010; and the cecal dominant genera were Ruminococcaceae_UCG-005, Ruminococcaceae_UCG-010, and Rikenellaceae_RC9_gut_group. Linear discriminant analysis effect size analysis (LDA > 2, P < 0.05) revealed the significantly differential bacteria enriched in the DDGS group, including Ruminococcaceae_UCG_012, Prevotellaceae_UCG_004 and Anaerococcus in the ruminal contents, which was associated with degradation of plant polysaccharides. Besides, Anaerosporobacter, Anaerovibrio, and Caproiciproducens in the cecal contents were involved in fatty acid metabolism. Compared with the BD group, 20 significantly different metabolites obtained in the ruminal contents of DDGS group were down-regulated (P < 0.05), and based on them, 4 significantly different metabolic pathways (P < 0.05) were enriched including "Linoleic acid metabolism," "Biosynthesis of unsaturated fatty acids," "Taste transduction," and "Carbohydrate digestion and absorption." There were 65 significantly different metabolites (47 were upregulated, 18 were downregulated) in the cecal contents of DDGS group when compared with the BD group, and 4 significantly different metabolic pathways (P < 0.05) were enriched including "Longevity regulating pathway," "Bile secretion," "Choline metabolism in cancer," and "HIF-1 signaling pathway." Spearman analysis revealed close negative relationships between the top 20 significantly differential metabolites and Anaerococcus in the ruminal contents. Bacteria with high relevance to cecal differential metabolites were Erysipelotrichaceae_UCG-003, Dielma, and Solobacterium that affect specific metabolic pathways in cattle. Collectively, our results suggest that feeding cattle with a DDGS diet improves the microbial structure and the metabolic patterns of lipids and carbohydrates, thus contributing to the utilization efficiency of nutrients and physical health to some extent. Our findings will provide scientific reference for the utilization of DDGS as feed in cattle industry.

8.
Zookeys ; 1172: 31-46, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37533934

RESUMO

Two new aphid species, Aphis (Toxoptera) fafuensis Cheng & Huang, sp. nov., feeding on Adinandramillettii (Pentaphylacaceae) from Fujian, China, and Aphis (Toxoptera) sennae Cheng & Huang, sp. nov., feeding on Sennabicapsularis (Fabaceae) from Yunnan, China, were described. Morphological characters and molecular data supported the taxonomic position of the new species within the subgenus Aphis (Toxoptera). A key for identifying species of apterous viviparous females in this subgenus is provided.

9.
Int J Mol Sci ; 24(13)2023 Jun 26.
Artigo em Inglês | MEDLINE | ID: mdl-37445854

RESUMO

Dried distiller's grains with solubles (DDGS) are rich in nutrients and can enhance animals' growth and immunity. However, there are few reports on the effects of a diet of DDGS on plasma metabolism and the related action pathways in domestic animals. In this study, groups of Guanling yellow cattle (GY) and Guanling crossbred cattle (GC) having a basal diet served as the control groups (GY-CG and GC-CG), and DDGS replacing 25% of the diet of GY and GC served as the replacement groups (GY-RG and GC-RG), with three cattle in each group. Plasma samples were prepared for metabolomic analysis. Based on multivariate statistical and univariate analyses, differential metabolites and metabolic pathways were explored. Twenty-nine significantly different metabolites (p < 0.05) were screened in GY-RG compared with those in GY-CG and were found to be enriched in the metabolic pathways, including choline metabolism in cancer, linolenic acid metabolism, and amino acid metabolism. Nine metabolites showed significant differences (p < 0.05) between GC-RG and GC-CG and were mainly distributed in the metabolic pathways of choline metabolism in cancer, glycerophospholipid metabolism, prostate cancer metabolism, and gonadotropin-releasing hormone (GnRH) secretion. These results suggest that a DDGS diet may promote healthy growth and development of experimental cattle by modulating these metabolic pathways. Our findings not only shed light on the nutritional effects of the DDGS diet and its underlying mechanisms related to metabolism but also provide scientific reference for the feed utilization of DDGS.


Assuntos
Ração Animal , Melhoramento Vegetal , Masculino , Bovinos , Animais , Ração Animal/análise , Dieta/veterinária , Animais Domésticos , Colina , Zea mays/química , Fenômenos Fisiológicos da Nutrição Animal , Grão Comestível/química
10.
Environ Sci Pollut Res Int ; 30(35): 83214-83230, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-37338686

RESUMO

Wanfeng Lake, a highland lake in the upper part of the Pearl River Basin, China, has long been disturbed by aquaculture and human activities, resulting in the accumulation of antibiotics and antibiotic resistance genes (ARGs), which pose a major threat to humans and animals. In this study, 20 antibiotics, 9 ARGs, 2 mobile genetic elements (intl1 and intl2), and microbial community structure were investigated in Wanfeng Lake. The results of the study showed that the total concentration of antibiotics in surface water was 372.72 ng/L, with ofloxacin (OFX) having the highest concentration (169.48 ng/L), posing a high ecological risk to aquatic organisms. The total concentration of antibiotics in sediments was 235.86 ng/g, with flumequine (FLU) having the highest concentration (122.54 ng/g). This indicates that the main type of antibiotics in Wanfeng Lake are quinolones. QPCR analysis results of the relative abundance of ARGs in both surface water and sediments showed that sulfonamide resistance genes > macrolide resistance genes > tetracycline resistance genes > quinolone resistance genes, indicating that sulfonamide resistance genes were the dominant type. The metagenomic results showed that the predominant microorganisms in the sediment under the phylum level were Planctomycetes, Proteobacteria, Euryarchaeota, and Chloroflexi. Pearson's correlation analysis showed a significantly positive correlation between antibiotics and environmental factors with ARGs in Wanfeng Lake and a significant positive correlation between antibiotics and ARGs with microorganisms in sediments. This suggests that there is a potential pressure of antibiotics on ARGs, while microorganisms provide the driving force for the evolution and spread of ARGs. This study provides a basis for further research on the occurrence and spread of antibiotics and ARGs in Wanfeng Lake. A total of 14 antibiotics were detected in surface water and sediments. OFX poses a high ecological risk in all points of surface water. Antibiotics and ARGs were significantly positively correlated in Wanfeng Lake. Antibiotics and ARGs in sediments were positively correlated with microorganisms.


Assuntos
Microbiota , Quinolonas , Animais , Humanos , Antibacterianos/farmacologia , Antibacterianos/análise , Lagos/análise , Rios/química , Farmacorresistência Bacteriana/genética , Macrolídeos , Ofloxacino , Sulfonamidas , China , Água/análise , Genes Bacterianos
11.
Poult Sci ; 102(5): 102582, 2023 May.
Artigo em Inglês | MEDLINE | ID: mdl-36940652

RESUMO

In this study, the anti-inflammatory and antiapoptotic effects of hydroxytyrosol (HT) in Mycoplasma gallisepticum (MG)-infected chicken were investigated, and the underlying molecular mechanisms were explored. The results revealed severe ultrastructural pathological changes after MG infection in the lung tissue of chicken, including inflammatory cell infiltration, thickening of the lung chamber wall, visible cell swelling, mitochondrial cristae rupture, and ribosome shedding. MG possibly activated the nuclear factor κB (NF-κB)/nucleotide-binding oligomerization domain-like receptor protein 3 (NLRP3)/interleukin (IL)-1ß signaling pathway in the lung. However, HT treatment significantly ameliorated MG-induced pathological damage of the lung. HT reduced the magnitude of pulmonary injury after MG infection by reducing apoptosis and releasing the proinflammatory factors. Compared with the MG-infected group, the HT-treated group exhibited significant inhibition of the expression of NF-κB/NLRP3/IL-1ß signaling-pathway-related genes; for example, the expressions of NF-κB, NLRP3, caspase-1, IL-1ß, IL-2, IL-6, IL-18, and TNF-α significantly decreased (P < 0.01 or <0.05). In conclusion, HT effectively inhibited MG-induced inflammatory response and apoptosis and protected the lung by blocking the activation of NF-κB/NLRP3/IL-1ß signaling pathway and reducing the damage caused by MG infection in chicken. This study revealed that HT may be a suitable and effective anti-inflammatory drug against MG infection in chicken.


Assuntos
Lesão Pulmonar , Mycoplasma gallisepticum , Animais , NF-kappa B/metabolismo , Regulação para Baixo , Proteína 3 que Contém Domínio de Pirina da Família NLR/metabolismo , Mycoplasma gallisepticum/fisiologia , Galinhas/metabolismo , Lesão Pulmonar/veterinária , Transdução de Sinais
12.
Res Vet Sci ; 156: 60-65, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-36791578

RESUMO

MG-132, an aldehyde-based peptide proteasome inhibitor (PI) that binds to the proteasome and reversibly inhibits proteasome activity, has been widely used in experimental research. However, it is not clear whether MG-132 has anti-inflammatory effects on liver injury. The molecular mechanism of the anti-inflammatory effect of the PI MG-132 on Con A-induced acute liver injury (ALI) mice was investigated by ELISA, HE, q RT-PCR, and IHC. The results showed that the serum activities of alanine aminotransferase (ALT) and aspartate aminotransferase (AST) and TNF-α and IL-6 contents of mice in the high and medium dose groups were reduced compared with those in the ALI group. The superoxide dismutase (SOD) and glutathione peroxidase (GSH-Px) levels in liver tissues were significantly increased, and the malondialdehyde (MDA) content was decreased. The pathological sections of mice in the ALI group showed typical ALI manifestations such as significant central venous stasis of liver tissues, cell swelling, and inflammatory cell infiltration. The pathological damage of liver tissues was relieved significantly in the three dose groups, especially in the high-dose group. The transcriptional level of TLR4/NF-κB pathway key factors mRNA was significantly reduced, and the expression of TLR4 and NF-κB P65 protein in liver tissues was significantly and positively correlated with the contents of TNF-α and IL-1ß (p < 0.01). Our findings suggest that MG-132 can alleviate the inflammatory response to Con A-induced ALI and exert a hepatoprotective effect, and its anti-inflammatory effect is related to the inhibition of TLR4/NF-κB signaling pathway activation.


Assuntos
NF-kappa B , Inibidores de Proteassoma , Camundongos , Animais , NF-kappa B/metabolismo , Inibidores de Proteassoma/metabolismo , Inibidores de Proteassoma/farmacologia , Fator de Necrose Tumoral alfa/metabolismo , Receptor 4 Toll-Like/genética , Complexo de Endopeptidases do Proteassoma/metabolismo , Fígado/metabolismo , Anti-Inflamatórios/farmacologia
13.
Insect Sci ; 30(2): 582-586, 2023 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-36073660

RESUMO

This study presents a novel strategy for regulating caste ratio via maternal reproduction in a parthenogenetic social aphid, Pseudoregma bambucicola. Most mothers in the colony produce only soldiers or normal nymphs, whereas a small proportion of mothers can produce both castes. Changes in the expression of key genes, including those related to reproduction, fertility, and chemical communication, may be responsible for the differentiation in maternal reproduction and caste development.


Assuntos
Afídeos , Mães , Feminino , Animais , Humanos , Reprodução/genética , Fertilidade , Ninfa , Afídeos/genética
14.
Avian Pathol ; 52(1): 51-61, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-36200987

RESUMO

Eimeria tenella (E. tenella), an important intestinal parasite of chicken caeca, causes coccidiosis and brings large economic losses to the poultry industry annually. Gut microorganismal alterations directly affect the health of the body. To understand how E. tenella affects its host, we analysed the changes in caecal microbial diversity and the physiological and morphological changes during the peak of oocyst shedding. Infected and healthy chickens differed significantly in caecal pathology and blood indicators. At the genus level, the abundances of Faecalibacterium, Clostridium, Lachnoclostridium, Gemmiger, Flavonifractor, Pseudoflavonifractor and Oscillibacter were significantly decreased in the infected samples, whereas Escherichia, Nocardia and Chlamydia were significantly increased. Functional gene pathways related to replication, recombination and repair, and transcription were significantly decreased, and functional genes related to metabolism were highly significantly reduced in the infected samples. Furthermore, in the infected samples, E. tenella reduced the haemoglobin levels and red blood cell counts, greatly reduced the beneficial bacteria and increased the potentially pathogenic bacteria. This study provides a research basis for further understanding the pathogenic mechanisms of E. tenella and provides insight for potential new drug development.RESEARCH HIGHLIGHTS First simultaneous description of caecal microbiota and physiological indicators during E. tenella infection.Metagenomics used to explore functional properties of chicken caecal microbiota during E. tenella infection.Caecal microbial compositions and functional genes altered significantly after infection.Blood indicators and caecal morphology were significantly altered in the infected group.


Assuntos
Coccidiose , Eimeria tenella , Microbiota , Doenças das Aves Domésticas , Animais , Eimeria tenella/genética , Galinhas/microbiologia , Doenças das Aves Domésticas/microbiologia , Oocistos/fisiologia , Coccidiose/parasitologia , Coccidiose/veterinária
15.
Front Vet Sci ; 10: 1223088, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38264466

RESUMO

Dried distillers' grains with solubles (DDGS)-based diets are nutritious and can improve the inflammations and intestinal immunity in livestock. However, there is limited research examining the effect of feeding DDGS-based diets on changes in intestinal metabolites and related pathways in livestock. In this study, six Guanling crossbred cattle (Guizhou Guanling Yellow cattle × Simmental cattle) were selected and divided into a basal diet (BD) group and an experimental group fed with DDGS replacing 25% of the daily ration concentrates (DDGS) (n=3), respectively. Fresh jejunum (J), ileum (I) and cecum (C) tissues were collected for metabolomic analysis. Differential metabolites and metabolic pathways were explored by means of univariate and multivariate statistical analysis. In comparison to the J-BD group, 123 differential metabolites (VIP > 1, p < 0.05) were identified in the J-DDGS group, which (top 20) were mainly divided into superclasses, including lipids and lipid-like molecules, organic acids and derivatives, and organoheterocyclic compounds. Compared with the I-BD group, 47 differential metabolites were obtained in the I-DDGS group, which were mainly divided into superclasses, including lipids and lipid-like molecules and organic acids and derivatives. The C-DDGS vs. C-BD comparison revealed 88 differential metabolites, which were mainly divided into superclasses, including lipids and lipid-like molecules, organic oxygen compounds, and nucleosides. A total of 34 significant metabolic pathways were found (p < 0.05, -log(p) > 1.3). Among them, 3 significant pathways were significantly enriched in the J-DDGS group, 11 significant pathways were significantly enriched in the I-DDGS group, and 20 significant pathways were significantly enriched in the C-DDGS group. Importantly, primary bile acid biosynthesis, linoleic acid metabolism, and arachidonic acid metabolism correlated with intestinal inflammation and immunity by regulating gut microbiota, prostaglandin synthesis, and cell signaling. The data suggest that DDGS-fed cattle unregulated three metabolic pathways mentioned above and that a DDGS-based diet was able to maintain a balance of these three metabolic pathways, thus resulting in improvement of intestinal inflammation and enhanced immunity in cattle. In conclusion, the DDGS diet has the potential to improve intestinal inflammation and enhance the immunity of Guanling crossbred cattle by regulating the metabolic patterns of lipids and lipid-like molecules, organic acids and derivatives, and related metabolic pathways. These results allude to potential metabolic regulatory mechanisms of DDGS diets and also provide a theoretical basis for the application of DDGS in livestock feed.

16.
Zootaxa ; 5183(1): 220-238, 2022 Sep 12.
Artigo em Inglês | MEDLINE | ID: mdl-36095449

RESUMO

Based on integrative taxonomic practices by incorporating morphological, genetic, and ecological data, two new aphid species, Periphyllus blackmani Li Huang sp. nov. and Periphyllus guangxuei Li Huang sp. nov., are proposed from the known species P. koelreuteriae. Apterous and alate viviparous females of the new species are described and differences with their most similar species P. koelreuteriae are presented. These aphids of P. koelreuteriae species complex feed exclusively on Koelreuteria (Sapindaceae), a native tree group and commonly cultivated as ornamental plants in China. A key to the Chinese species of P. koelreuteriae species complex is provided.


Assuntos
Afídeos , Sapindaceae , Animais , Afídeos/anatomia & histologia , Afídeos/genética , China , Feminino
17.
Sci Total Environ ; 846: 157472, 2022 Nov 10.
Artigo em Inglês | MEDLINE | ID: mdl-35870598

RESUMO

The large-scale use and release of antibiotics may create selective pressure on antibiotic resistance genes (ARGs), causing potential harm to human health. River ecosystems have long been considered repositories of antibiotics and ARGs. Therefore, the distribution characteristics and seasonal variation in antibiotics and ARGs in the surface water of the main stream and tributaries of the Chishui River were studied. The concentrations of antibiotics in the dry season and rainy season were 54.18-425.74 ng/L and 66.57-256.40 ng/L, respectively, gradually decreasing along the river direction. The results of antibiotics in the dry season and rainy season showed that livestock and poultry breeding were the main sources in the surface water of the Chishui River basin. Risk assessments indicated high risk levels of OFL in both seasons. In addition, analysis of ARGs and microbial community diversity showed that sul1 and sul3 were the main ARGs in the two seasons. The highest abundance of ARGs was 7.70 × 107 copies/L, and intl1 was significantly positively correlated with all resistance genes (p< 0.01), indicating that it can significantly promote the transmission of ARGs. Proteobacteria were the dominant microorganisms in surface water, with a higher average abundance in the dry season (60.64 %) than in the rainy season (39.53 %). Finally, correlation analyses were performed between ARGs and antibiotics, microbial communities and heavy metals. The results showed that there was a significant positive correlation between ARGs and most microorganisms and heavy metals (p< 0.01), indicating that occurrence and transmission in the environment are influenced by various environmental factors and cross-selection. In conclusion, the persistent residue and transmission of ARGs and their transfer to pathogens are a great threat to human health and deserve further study and attention.


Assuntos
Metais Pesados , Microbiota , Antibacterianos/análise , China , Resistência Microbiana a Medicamentos/genética , Monitoramento Ambiental , Genes Bacterianos , Humanos , Metais Pesados/análise , Rios/química , Estações do Ano , Água/análise
18.
J Zhejiang Univ Sci B ; 23(4): 339-344, 2022 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-35403388

RESUMO

Cucurbitaceae is an important family of flowering plants containing multiple species of important food plants, such as melons, cucumbers, squashes, and pumpkins. However, a highly efficient genetic transformation system has not been established for most of these species (Nanasato and Tabei, 2020). Watermelon (Citrullus lanatus), an economically important and globally cultivated fruit crop, is a model species for fruit quality research due to its rich diversity of fruit size, shape, flavor, aroma, texture, peel and flesh color, and nutritional composition (Guo et al., 2019). Through pan-genome sequencing, many candidate loci associated with fruit quality traits have been identified (Guo et al., 2019). However, few of these loci have been validated. The major barrier is the low transformation efficiency of the species, with only few successful cases of genetic transformation reported so far (Tian et al., 2017; Feng et al., 2021; Wang JF et al., 2021; Wang YP et al., 2021). For example, Tian et al. (2017) obtained only 16 transgenic lines from about 960 cotyledon fragments, yielding a transformation efficiency of 1.67%. Therefore, efficient genetic transformation could not only facilitate the functional genomic studies in watermelon as well as other horticultural species, but also speed up the transgenic and genome-editing breeding.


Assuntos
Citrullus , Cucurbitaceae , Sistemas CRISPR-Cas , Citrullus/genética , Cucurbitaceae/genética , Edição de Genes , Melhoramento Vegetal , Transformação Genética
19.
Virulence ; 12(1): 2703-2720, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34678131

RESUMO

Mycoplasma ovipneumoniae (MO) is a principle causative agent of chronic respiratory disease in ruminants, including sheep, goats, and deer, posing a great threat to the ruminant industry worldwide. However, the pathogenesis of MO infection still remains not well understood and needs further clarification. Here we report a time-dependent apoptosis in cultured murine alveolar macrophage (MH-S) cell lines in response to MO infection in vitro. Mechanistically, MO infection activated apoptosis in MH-S cells through caspase-8-dependent extrinsic pathway and through tumor protein 53 (p53)- and reactive oxygen species (ROS)-dependent intrinsic mitochondrial pathways. Moreover, MO infection promoted both transcription and translation of proinflammatory cytokine genes including interleukin-1ß (IL-1ß), IL-18, and tumor necrosis factor-α (TNF-α), in a caspase-8-, p53-, and ROS-dependent manner, implying a potential link between MO-induced inflammation and apoptotic cell death. Collectively, our results suggest that MO infection induces the activation of extrinsic and intrinsic apoptotic pathways in cultured MH-S cells, which is related to upregulated expression of proinflammatory cytokines. Our findings will contribute to the elucidation of pathogenesis in MO infection and provide valuable reference for the development of new strategies for controlling MO infection.


Assuntos
Cervos , Mycoplasma ovipneumoniae , Pneumonia por Mycoplasma , Animais , Apoptose , Caspase 8/genética , Caspase 8/metabolismo , Cervos/metabolismo , Macrófagos Alveolares , Camundongos , Mycoplasma ovipneumoniae/genética , Mycoplasma ovipneumoniae/metabolismo , Pneumonia por Mycoplasma/veterinária , Espécies Reativas de Oxigênio/metabolismo , Ovinos , Proteína Supressora de Tumor p53/genética , Proteína Supressora de Tumor p53/metabolismo
20.
Vet Microbiol ; 263: 109250, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-34649009

RESUMO

Hypervirulent fowl adenovirus serotype 4 (FAdV-4)-induced hepatitis-hydropericardium syndrome (HHS) with high mortality causes huge economic losses to the poultry industry worldwide. However, commercially available vaccines against FAdV-4 infection remain scarce. Here, we prepared a subunit vaccine candidate derived from the bacterially expressed recombinant Fiber2 protein (termed as rFiber2 subunit vaccine) of FAdV-4 GZ-QL strain (a hypervirulent strain isolated in Guizhou province) and a recombinant plasmid pVAX1-Fiber2 as DNA vaccine candidate (termed as Fiber2 DNA vaccine). The immune effects of different dosages (50, 100, and 150 µg) of these were evaluated through immunization and challenge studies in chickens. Three injections of the rFiber2 subunit vaccine or the Fiber2 DNA vaccine induced robust humoral and cellular immune responses in chickens, which was assessed based on the secretion of high-level neutralizing antibodies, Th1- (IL-2, IFN-γ) and Th2-type cytokines (IL-4, IL-6). Importantly, the efficacy of the rFiber2 subunit vaccine was significantly higher (80 %-100 %) compared with the Fiber2 DNA vaccine (50 %-60 %) and a commercial inactivated vaccine (80 %). Collectively, these results suggest that the rFiber2 subunit and Fiber2 DNA vaccine candidate induced remarkable humoral and cellular immune responses, while the rFiber2 subunit vaccine candidate possesses better potential in the fight against FAdV-4 infection, laying foundations for the effective control of HHS in chickens.


Assuntos
Infecções por Adenoviridae , Aviadenovirus , Doenças das Aves Domésticas , Vacinas de Subunidades , Vacinas Virais , Infecções por Adenoviridae/prevenção & controle , Infecções por Adenoviridae/veterinária , Animais , Aviadenovirus/genética , Galinhas/imunologia , Doenças das Aves Domésticas/prevenção & controle , Sorogrupo , Vacinas de DNA/imunologia , Vacinas de Subunidades/imunologia , Vacinas Virais/imunologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...